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Abstract. A stochastic Bayesian approach for combining well logs and geophysical
surveys for enhancing subsurface characterization is presented. The main challenge we
face is in creating the bridge to link between ambiguously related geophysical surveys and
well data. The second challenge is imposed by the disparity between the scale of the
geophysical survey and the scale of the well logs. Our approach is intended to integrate
and transform the well log data to a form where it can be updated by the geophysical
survey, and this tends to be a convoluted process. Our approach starts with generating
images of the lithology, conditional to well logs. Each lithology image is then used as the
basis for generating a series of shaliness images, conditional to well log data. Shaliness
images are converted to resistivity images using a site-specific petrophysical model relating
between shaliness, resistivity, and lithology, to create the necessary interface with the
cross-well resistivity survey. The lithology and resistivity images are then updated using
cross-well electromagnetic resistivity surveys. We explored the limits of the approach
through synthetic surveys of different resolutions and error levels, employing the
relationships between the geophysical and hydrological attributes, which are weak,
nonlinear, or both. The synthetic surveys closely mimic the conditions at the LLNL
Superfund site. We show that the proposed stochastic Bayesian approach improves
hydrogeological site characterization even when using low-resolution resistivity surveys.

1. Introduction

Combining ground-surface or cross-well geophysical surveys
with well logs for enhancing the quality of subsurface charac-
terization has been the goal of recent studies. The primary
motivation has been the recognition that geophysical surveys
offer unique opportunities for enhancing cross-well interpola-
tion and are particularly promising in situations of data scar-
city. Hyndman et al. [1994] developed an inversion algorithm
that employs both seismic cross-well travel times and solute
tracer concentration to estimate the interwell geology and
therefore the hydraulic parameters. Sheets and Hendricks
[1995] used regression techniques to build a site-specific petro-
physical relationship between the soil water content estimated
from borehole neutron probes and the bulk electrical conduc-
tivity of the soil estimated from electromagnetic (EM) induc-
tion surveys. This model was then used for mapping the soil
water content. Daily et al. [1992] conducted an infiltration
experiment to build a site-specific regression model between
the resistivity and moisture, and showed the potential capabil-
ity of electrical resistivity tomography (ERT) to monitor cap-
illary barriers performance and flow in the vadose zone. Doyen
[1988] used cokriging to estimate porosity from surface seismic
data and well logs. Cassiani et al. [1998] included seismic to-
mography data and sonic data using a geostatistical approach
to improve the estimation of the hydraulic conductivity. Lucet
and Mavko [1991] combined cross-well seismic tomography,
logs, and petrophysical relationships between porosity, veloc-

ity, and clay content to estimate porosity and lithology. Rubin
et al. [1992] and Copty and Rubin [1995] used a Bayesian
approach and maximum likelihood principles to combine seis-
mic velocity with sparsely measured hydraulic conductivity and
pressure for the purpose of mapping the spatial distribution of
the hydraulic conductivity. Copty and Rubin showed that in-
tegrating geophysical and hydrological data enhances the esti-
mation of the hydraulic conductivity despite the uncertainty
and errors associated with the interpretation of the seismic
velocity. Hubbard et al. [1997] used a similar approach to in-
corporate the spatial distribution of dielectric constant ob-
tained from ground-penetrating radar (GPR) to estimate soil
saturation and permeability in the vadose zone in the case of
bimodal spatially-distributed hydraulic conductivity distribu-
tion. More recently, Hubbard et al. [1999] combined acoustic
tomography with borehole data to estimate the spatial covari-
ances of the log conductivity.

A few observations based on these studies are as follows: (1)
No universal methods or petrophysical models are available for
converting geophysical attributes to hydrogeological ones; (2)
The most challenging problem is tying well-logging measure-
ments to the geophysical surveys. This issue involves problems
of scale disparity and inconsistencies in the methods of data
acquisition and interpretation. The last problem can be dem-
onstrated by the fact that resistivity at the Lawrence Livermore
National Laboratory (LLNL) site, which we explore later in
this paper, was measured along boreholes using several differ-
ent tools, each characterized by a different support volume,
sometimes leading to dramatically different results.

The present paper investigates the use of geophysical data
and surveys for mapping lithology and soil properties in the
subsurface using a Bayesian approach [Copty and Rubin, 1995].
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The study focuses primarily on the issues and problems asso-
ciated with the assimilation of weakly or nonlinearly correlated
data that are characterized by different spatial resolutions, in a
geologically complex environment.

The paper includes five sections. Section 2 introduces the
LLNL superfund site and presents a geostatistical analysis of
the data. A petrophysical relationship between geophysical and
hydrological variables is also presented. Section 3 outlines in
detail our approach for data interpretation, principles, and
application. Section 4 introduces the synthetic electromagnetic
survey, and section 5 discusses Bayesian updating of presimu-
lated lithology and resistivity random fields and evaluates the
effectiveness of the proposed approach. Section 6 summarizes
all findings.

2. Site Description, Sources of Data, and
Geostatistical Analysis
2.1. Lawrence Livermore Superfund Site

Volatile organic compounds (VOC) were used at the LLNL
superfund site (Figure 1) as solvents when the site was an
active Naval Air Force base in the 1940s. Fuel petroleum
hydrocarbons associated with a gasoline spill have also con-
taminated the underlying aquifer. The VOCs are classified as
mainly trichloroethylene (TCE), tetrachloroethylene (PCE),
and chloroform. Tritium and chromium are also present, but in
smaller concentrations [Noyes, 1991]. The site is located in an
unconsolidated alluvial basin. The hydrogeology of the area is
very complex, but a considerable amount of geological, geo-
physical, hydraulic, and geochemical data are available. These
data provide a unique opportunity to study the relationship

between hydraulic conductivity and sediment texture. We focus
our analysis on the area near treatment facility D (TFD) shown
in Figure 1. The locations of the boreholes which are used in
the present analysis are depicted in Figure 2a.

The contaminants are distributed within a thick, complex
sequence of unconsolidated alluvial sediments [Blake et al.,
1995]. A hydrostratigraphic analysis has been conducted to
divide this sequence of layers into hydrostratigraphic units
(HSUs). These latter are defined as sedimentary sequences
whose permeable layers show evidence of hydraulic connectiv-
ity, using several complementary sources of information [Blake
et al., 1995] including chemical (concentration in groundwater
and soil), geological (lithological core description), geophysical
(wire line borehole electrical logs), and hydrogeological (hy-
draulic well tests, hydraulic communication between layers).
Thicker aquitards were also defined as HSUs, while minor
aquitards define HSU boundaries across which little or no
vertical hydraulic leakage takes place (Figure 2b).

2.2. Lithological and Geophysical Raw Data

We focus our efforts on the cross section between wells
1206, 1208, 1205, 1252, 1250, and 1251–1254 (Figure 2a), at
HSU2, shown in Figure 2b. Spatial statistics are inferred from
all available data and wells in HSU2. Types of data collected
along the wells include geophysical well log data and lithology.
These various data are characterized by different vertical spa-
tial resolution along the boreholes, varying from 3 cm to 15 cm.

Geophysical well log data collected at the site include induc-
tion resistivity, short and long normal resistivity, spontaneous
potential, single-point resistance, guard resistivity, caliper, and
gamma ray, among others. A general description of these log

Figure 1. Site map of LLNL showing treatment facility (TF) areas and total volatile organic compounds
(VOCs) contoured without respect to depth. Our analysis is focused on the treatment facility D (TFD) shown
on the right-hand side. From Blake et al. [1995].
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types is given by Keys [1997]. Lithology logs were classified as
gravel, clay, sand, silt, and mixtures, such as, gravelly clay,
clayey sand, totaling 16 different lithologies. To simplify the
mapping of the lithologies, and because we are particularly
interested in mapping the high and low hydraulic conductivity
zones, only two main classes will be used: (1) silt, which in-
cludes all silts, clays, and their mixtures, and (2) sand, which
includes all sands, gravels, and their mixtures.

2.3. Geostatistical Well Log Analysis

Since the HSUs are not horizontal and are not defined by
constant thickness (Figure 2b), the vertical coordinates were
normalized by the average thickness of the HSU, which is .17
m (Figure 3). An indicator semivariogram was used to charac-
terize the spatial variability of the lithologies on the basis of a
binary representation for sand and silt. Semivariograms have
also been used to characterize gamma-ray (G) and resistivity
(R) spatial variability. Those variables were investigated with
and without log transformation. Semivariograms of geophysi-
cal attributes within each lithology were also investigated. The

reason for presenting the statistics of these three variables is in
the fact they form the basis of our method for utilizing the
resistivity survey.

2.3.1. Lithology indicator semivariograms. On the basis
of the silt/sand classifications and adopting an indicator coding
of 0 for sands and 1 for silts, a geostatistical analysis of the
lithofacies was performed. Figures 4a and 4b depict the vertical
and horizontal indicator semivariograms. Because the vertical
semivariogram was computed after normalizing the depth by
the thickness of HSU2, the maximum lag is equal to the aver-
age thickness of the HSU2. The volume fractions of silts, p ,
and sands, (1 2 p), are 0.48 and 0.52, respectively. The sills of
the semivariograms are 0.25, equal to the theoretical value of
the variance of the population which is p(1 2 p). The theo-
retical models fitted to the data are exponential with a range of
1.5 m in the vertical direction, and 30 m in the horizontal
direction.

2.3.2. Resistivity measurement analysis. The analogies
between the flow of electrical current and fluid through porous
media have made electric logging of the formation resistivity a
commonly employed technique in geophysical prospecting
[Keys, 1997]. Since a cross-well electromagnetic resistivity sur-
vey is considered at the LLNL site, well log resistivities were
considered as the primary means for tying and correlating the
tomographic survey with other soil properties.

Semivariograms of induction resistivity, guard resistivity and
short and long resistivities were investigated; yet well-defined,
long-range patterns of spatial correlation were not identifiable.
Despite the apparent lack of spatial correlation of the resistiv-
ity, we found that the combination of induction resistivity with
gamma-ray and lithology logs offers an opportunity for indirect
conversion of gamma-ray and lithology pairs into estimates of
resistivity. This option will be explored below.

Figure 2. (a) Location of the wells available for the present
study in TFD. Nine wells are depicted and labeled 1205, 1206,
1208, and 1250 through 1255. (b) Vertical cross section over all
hydrostratigraphic units (HSUs) through all wells depicted on
Figure 2a. Vertical dash lines represent missing data. HSUs
are referred by their name HSU 1 through 6. Our analysis is
focused on the shaded HSU referred to us as HSU2.

Figure 3. Vertical cross-section of the present study over
HSU2 and only through wells 1206, 1208, 1205, 1252, 1250, and
1251–1254. Distances are reported from well 1206 and along
the cross section. Only available data along the wells are de-
picted using continuous vertical lines.
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Our choice of induction resistivity among all the resistivity
logs as the primary candidate for correlation with the resistivity
survey is based on several observations: (1) The measurement
procedure does not require conductive fluid in the borehole or
direct physical contact with the formation. (2) Induction tools
minimize the contribution of the borehole, invaded zone, and
surrounding formations on the measurement. (3) Induction
logs are automatically corrected for skin effect during record-
ing. (4) Although induction tools were designed for noncon-
ductive borehole environments, they are found to yield excel-
lent measurements in water-based mud, provided that the
water is not too salty, the formation is not too resistive, and the
borehole diameter is not too large [Keys, 1997]. The induction
log measurements at the LLNL are of excellent quality, which
reinforced our choice.

2.3.3. Gamma-ray analysis. Gamma-ray logs measure
naturally occurring gamma emissions around the borehole.
The sources of the radioactive decay series in nature are pri-
marily potassium 40, uranium 238 and 235, and thorium 232
[Serra, 1986]. Potassium 40 is by far the most abundant radio-
active isotope found in sediments. As the content of potassium
40 increases, the response of the gamma-ray probe increases.

Gamma-ray response decreases from shales and clays, to silt-
stone, to sandy siltstones, to sandstones and gravels.

Conversion of gamma-ray measurements to shaliness helps
to remove inconsistencies in the data introduced by using dif-
ferent tools and calibration techniques [Doveton, 1986; Hill,
1986]. Shaliness for unconsolidated rock is given by [Serra,
1986]

S 5 0.083@23.7IG 2 1# (1)

where IG, the gamma-ray index, is defined as follows [Serra,
1986]:

IG 5
G 2 GMin

GMax 2 GMin
(2)

Figures 5a and 5b depict the vertical and the horizontal
semivariograms of the shaliness and the fitted models. The best
fit was found to be a Gaussian model with a nugget equal to
0.011 and ranges of 2.5 m in the vertical direction and 25 m in
the horizontal direction. Integral scales are set to 1.46 m (.1.5
m) and 14.43 m (.14.5 m) in the vertical and the horizontal
directions.

2.3.4. Shaliness versus resistivity relationship. Figure 6a
displays a cross plot of the resistivity and shaliness. Two main

Figure 4. Indicator experimental and theoretical semivario-
grams: (a) vertical direction and (b) horizontal direction. Both
theoretical semivariograms are found to be exponential.

Figure 5. Shaliness experimental and theoretical semivario-
grams: (a) vertical direction and (b) horizontal direction. Both
theoretical semivariograms are found to be Gaussian.
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clusters are shown, corresponding to the different lithologies.
Figure 6a suggests that resistivity-shaliness pairs are useful for
lithology identification. The overlap between the sand and silt
clusters indicates that a unique identification of lithology based
on resistivity and shaliness is possible for most, though not all,
pairs. The main reason for the overlap between the two clus-
ters is data reduction: the original lithology classification con-
sisted of 16 members, which we have reduced to only two.
Despite the ambiguous interpretation of several pair combina-
tions, it appears that this cross plot is a good analytical tool.
This is one of the fundamental results of our analysis so far,
since it suggests a systematic approach for tying the geophysi-
cal survey with well logging information. The approach is de-
veloped in section 3.

Figure 6a was obtained using all well log data within the

HSU2. The use of shaliness instead of gamma-ray activity
considerably improved the clustering analysis. This analysis has
been applied to other HSUs as well, and in all cases we ob-
served a behavior similar to that shown in Figure 6a.

3. Bayesian Data Assimilation
In an ideal situation the geophysically measured attributes

correlate well with the hydrogeological ones, e.g., permeability,
and the conversion of the geophysical survey to a hydrogeo-
logical distribution map is straightforward. In more realistic
situations, such as the one described here, the conversion of
the geophysical attributes to the hydrogeological ones is con-
voluted and nonunique. The difficulties we face in the imple-
mentation of the geophysical survey are several. First, we ex-
pect the survey resistivity to be of relatively low resolution. At
the same time, we need to develop high-resolution permeabil-
ity images, and hence we face a problem of scale disparity.
Additionally, the database available at the site was developed
over many years (regardless of our survey!), and hence the
types of data highest on our wish list are not available. For
example, the cores were not tested for permeability. Hence our
study can also be defined as “the art of the possible.”

The purpose of this section is to develop a conceptual, data-
driven approach for lithology mapping based on the well log
data. The proposed approach is general in its basic principles
but at the same time is site-specific since the petrophysical
models employed are not universal. The general approach is
stochastic. The choice is justified given the large uncertainty
associated with cross-well interpolation, with the petrophysical
models and with the interpretation of the geophysical surveys.
The rationale for our approach is based on the following ob-
servations:

1. Resistivity and shaliness can be used for lithology iden-
tification through the cross plot (Figure 6a). Once a type of
lithology is determined, further mapping of hydrogeological
properties can be pursued.

2. Facies identification based on the shaliness-resistivity
crossplot is nonunique owing to some overlap between the
sand and silt clusters.

3. Borehole resistivity measurements display short corre-
lation range, and it is impractical to develop spatial images of
the resistivity using cross-well geostatistical interpolation.

4. Shaliness displays a well-defined spatial correlation
structure. It can be used for projecting resistivity measure-
ments indirectly through a combination of geostatistical inter-
polation-simulation techniques, in conjunction with the non-
linear correlation structure it displays with the resistivity, as
expressed through the cross plot (Figure 6a).

Based on these observations we propose an approach which
consists of sequentially generating a series of collocated at-
tributes. At the basis of the hierarchy, images of the lithology
are generated, conditional to well logs and possibly also to the
survey resistivity. Each lithology image serves then as the basis
for generating a series of shaliness images, again conditional to
well data. The shaliness images are then used to correlate the
survey resistivity with the hydrogeological attributes obtained
experimentally. The series of generated images all have in
common the well data and the same underlying spatial struc-
ture, and hence they are all physically plausible. The variations
between the images constitute a measure of the spatial vari-
ability and estimation uncertainty. Our focus here is on esti-
mating resistivity, but it can be converted to porosity and con-

Figure 6. (a) Petrophysical relationship between shaliness
and resistivity plotted from available data at the wells crossing
HSU2. (b) Generic scheme for constructing resistivity pdfs to
conditional lithology and shaliness.
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ductivity through well known models such as Archie’s,
Waxman-Smits’, Kozeny-Carmen’s [Mavko et al., 1998], or
through site-specific calibration curves [e.g., Daily et al., 1992].

3.1. Outline of the Approach

After the exploratory data analysis is performed as previ-
ously described, we proceed in four steps as described below.
An accompanying flow chart is shown in Figure 7.

3.1.1. Step 1: Generation of the lithology images using
sequential indicator simulation (SIS). The lithology is de-
fined through an indicator variable I according to [Rubin,
1995]:

I~x! 5 H 1 x in silt
0 otherwise (3)

Note that boldface letters denote vectors; i.e., x is the location
coordinates vector. Lowercase i is a realization of the spatial
random function (SRF) I . I is characterized through its un-
conditional expected value, which is assumed stationary:

E$I% 5 p (4)

where E denotes the expected value operator and p is the
volume fraction of silts. Its pattern of spatial variability is
defined through the semivariogram

g I~x , x*! 5
1
2

E$~I~x! 2 p!~I~x*! 2 p!% (5)

and is shown in Figure 4.
The unconditional statistics define the crudest level of prob-

abilistic characterization. A more advanced characterization is
possible through the conditional moments of I . These statistics
are the cornerstone of the SIS algorithm [Deutsch and Journel,
1998; Rubin and Bellin, 1998] which we adopt here. The SIS

algorithm consists of computing the expected value of I con-
ditional to the borehole data:

pc 5 Ec$I% 5 E$I u$measurements%% (6)

with a superscript c denoting conditional.
Since I is binary, pc is statistically exhaustive. Hence once pc

is defined, a realization of I can be drawn, with pc as the target
statistic. The process of computing pc and drawing realizations
is done sequentially over a grid. Spatial continuity is main-
tained by conditioning I not only on well data but also on all
the previously generated values. Specifically,

pc 5 p 1 O
n51

N

ln~I~xn! 2 p! (7)

where the weights ln are obtained by solving the following
system of linear equations:

O
n51

N

lng I~xm, xn! 5 g I~xm, x! , m 5 1, · · · , N (8)

The important point to note is that N , the number of lithol-
ogy measurements, includes all the observations as well as the
values generated at all the nodes other than x.

3.1.2. Step 2: Generation of shaliness images. This step is
similar in principle to the previous one. The differences are in
the fact that (1) the shaliness S is not a binary variable and (2)
the pattern of spatial variability of the shaliness may be differ-
ent between the sand and silt lithologies; i.e., gS ui, the semi-
variogram of the shaliness S , depends on the lithology i 5 0 or
1:

gSui~x , x*! 5
1
2

E$~S~x ui! 2 mSui!~S~x* ui! 2 mSui!% (9)

The univariate and spatial statistics of the shaliness were
discussed in section 2. Hence at this step we compute, using the
kriging equation, the conditional mean and variance of S ,
which define the target statistics. Subsequently, using a Gauss-
ian random generator, a local value for S is drawn from the
distribution. Defining the shaliness S through its mean mS ui

and its semivariogram gS ui for a given lithology i , the condi-
tional mean mS ui

c and variance sS ui
2c of the shaliness are given by

mSui
c 5 O

l51

N

a lS~x lui! (10)

sSui
2c 5 sSui

2 2 O
l51

N

a l CovSui~x l, x! (11)

where the covariance is identified by CovS ui(xl, x) 5 sS ui
2 2

gS ui(xl, x), and the weights a l are obtained by solving the
following system of linear equations:

O
l51

N

a l CovSui~xm, x l! 5 CovSui~xm, x! , m 5 1, · · · , N

(12)

All points l , m 5 1, z z z , N are located within the lithology i .
3.1.3. Step 3: Computing the resistivity prior probability

density function. Once x is identified as being either sand or
silt and is assigned a shaliness value, a prior probability density

Figure 7. A flow chart for a generic point x.
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function (pdf) for the resistivity fR(x)(r uI 5 i , S 5 s) can be
defined through Figure 6a. R and S denote the space random
function (SRF) of the resistivity and the shaliness, respectively,
and r and s denote their realizations. Figure 6b illustrates the
joint pdf of R and S given I 5 0 (i.e., sand lithology) and the
marginals fR(r uI 5 0) and fS(s uI 5 0). Conditioning further
on S 5 s0 leads to fR uS(r uS 5 s0, I 5 0), which is our
Bayesian prior. Scarcity of data led us to condition on ranges of
S values rather than on single values. Examples of fR(x)(r uI 5
i , 0.3 # s # 0.4), fR(x)(r uI 5 i , 0.4 # s # 0.5), and
fR(x)(r uI 5 i , 0.5 # s # 0.6) for i 5 0, 1 are shown in Figure
8. These pdfs are the Bayesian prior pdfs of the resistivity, and
hence our stochastic estimation for the resistivity R at x in case
no additional data become available through surveying.

3.1.4. Step 4: Updating fR(x)(rzI 5 i, S 5 s) on the basis of
cross-well electromagnetic resistivity survey r(x). Defining
fR(x)(r uI 5 i , S 5 s) 5 f9R(x)(r) for brevity, and given a
collocated survey resistivity r(x), the posterior pdf f 0R(x)(rur)
can be defined through Bayes’ rule [Ang and Tang, 1975]:

f 0R~x!~r ur! 5 CRL~r ur! f9R~x!~r! (13)

where L(r ur) is the likelihood function and CR is a normalized
factor defined as [Ang and Tang, 1975]

CR 5 S E
2`

`

L~r ur! f9R~x!~r! drD 21

(14)

In general, r is defined over a support volume larger than
the support volume of r . Note that in the case of a high-
resolution geophysical survey, r(x) 3 r(x), and Bayesian up-
dating is unnecessary. In this case, r can simply be converted to
the hydrogeological properties of interest if a petrophysical
model is available. That conversion will be as reliable and
accurate as the petrophysical model used for conversion. This,
however, is not generally the case, and the alternative is to
update f9R(x)(r) given r. Typically, we are interested in R rep-
resentative of a block of scale ;1 m while r is defined by blocks
of scale ;3 m or greater. The inference of the likelihood
function, L(r ur), is critical for the successes of the update and
is discussed in section 5. Once f 0R(r ur) is defined, however, a
realization of R at x can be drawn. The whole process is

repeated for all x until a complete image of the resistivity field
is completed.

An attractive property of Bayesian updating is that the pos-
terior f 0R(x)(r) is at least as informative as f9R(x)(r). In the case
of a totally noninformative likelihood function, L(r ur) equals
L(r), and equation (13) yields f9R(x)(r) 5 f 0R(x)(r). It is
emphasized that the method does not always guarantee better
estimates for a couple of reasons. First, the Bayesian approach
provides a pdf, not a single valued estimate. Second, the im-
provement achieved in the posterior pdf is dictated by the
quality of external factors such as the accuracy of the geophysi-
cal survey and the petrophysical model.

A modification of step 1 is appropriate and useful if the
lithology images can also be conditioned on the resistivity. As
is apparent from Figure 6a, the lithology images can be im-
proved through the resistivity survey: sands tend to be charac-
terized by high resistivities and silts are characterized by low
resistivity, although there is some overlap at midrange values.
Our approach calls for Bayesian updating of pc as well,
through the relationship

pc9 5 CIL~r uI! pc (15)

where L(r uI) is the likelihood function, similar in nature to
(14), only relating r to I rather than R . CI is a normalized
factor similar to CR in (14).

3.2. The Synthetic “True” Data Base

The concept outlined in section 3.1 is demonstrated here
using a synthetic example, generated to simulate closely the
conditions of HSU2. Figure 9a depicts a realization of HSU2
lithology conditional to the lithology observed at the wells. The
field is 230 m in the horizontal direction and 17 m in the
vertical direction. Realizations of the shaliness and resistivity
fields, based on sections 3.1.2. and 3.1.3., conditional to bore-
hole data, are depicted in Figures 9b and 9c. The spatial sta-
tistics used are those described in section 2.

4. Electromagnetic Surveying
Field EM surveying is a complex mapping of the detailed,

high-resolution R(x) distribution into a low-resolution r(x)
field. In reality, the geophysical response is distorted by both
data acquisition and the inversion process.

An electromagnetic survey was conducted at LLNL through
polyvinyl chloride (PVC) cased wells. Two surface to borehole
profiles were measured with a surface transmitter loop (fre-
quency 11.3 kHz) and a vertical magnetic coil receiver placed
in well 1250. The profiles were in the region between wells
1250–1251 and 1250–1252 shown in Figure 2. Seven cross-well
EM data sets were collected. A vertical magnetic coil trans-
mitter (frequency of 9.6 kHz) was placed in well 1250 and 1251.
From well 1250, five data sets were collected with a vertical
magnetic receiver placed successively in wells 1251 through
1255. The last two data sets were collected between wells
1251–1253 and wells 1251–1254. All data sets from the cross-
well EM survey have been processed, but final results are not
yet available. To explore the Bayesian updating approach, syn-
thetic surveys of the resistivity are simulated.

The theoretical foundation of the EM survey is based on
Maxwell’s wave propagation equations. These equations cou-
ple the electric field to the magnetic one and are given in
Appendix A. Under reasonable approximation of low variabil-
ity of the resistivity between the sand and the silt bodies (see

Figure 8. Examples of prior pdf’s f9(r) for I 5 i , i 5 0, 1
and shaliness 0.3 , s , 0.6.
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Figure 6a), the wave propagation problem can be reduced to
an electric current diffusion problem. Identical problems have
been considered in fluid flow in porous media [Dagan, 1989]
and flow of electric currents [Abramovich and Indelman, 1995].
Borrowing from their results, and considering the two-
dimensional (2-D) survey, the electrical conductivity kb of a
block which covers nx by nz small-scale blocks (Figure 10),
where nx is the number of blocks in x direction and nz in the
z direction, is given by the geometric mean:

kb 5 S P
l,m51

nx3nz

k l,mD 1/~nx3nz!

(16)

where k l ,m are the small-scale blocks. This formula is applica-
ble for blocks that are large relative to the characteristic length
scale of resistivity heterogeneity. In the present case, since the
characteristic length of the spatial variability is small, geomet-
ric averaging appears to be the appropriate homogenization
procedure.

From simple algebra, r 5 () l ,m51
nx3nz Rl ,m)1/(nx3nz) (see Ap-

pendix A). Hence for the purpose of this study, the resistivity
of a block detected in a survey equals the geometric averaging
of the small-scale resistivities. We shall consider nx 5 nz 5 3,
6, 9. Figures 11a and 11b show results of synthetically survey-
ing the resistivity field shown in Figure 9c using different res-
olutions. As the resolution decreases, small-scale details be-
come obscure and fuzzy, and the range of resistivity values
detected narrows.

5. Synthetic Case Study
In our case study we investigate the cross-section shown in

Figure 3, assuming that Figures 9a to 9c, which were generated
conditional to the borehole data, are the “true” images of
that cross section. A geophysical survey of the same cross
section is simulated using equation (16). Our goal is to test
the capability of the method described in section 3 to re-
construct the base case’s images while benefiting from the
resistivity survey.

Typical images obtained through the use of prior pdf’s only
are depicted in Figures 12a to 12c. It is noted that these images
are in good agreement with the corresponding images (Figures
9a to 9c) but only in the well-sampled areas, on the right-hand
side of the images. Figures 12a and 12c will be updated fol-
lowing the methods outlined in sections 3.1.3 and 3.1.4. Up-
dated images will be compared with to the assumed “true”
images depicted in Figures 9a and 9c.

Figure 9. “True” geological setting. (a) Sequential indicator
simulation of the lithology conditional to borehole data. Black
and white represent sand and silt, respectively. (b) Sequential
Gaussian simulation of the shaliness conditional to borehole
shaliness measurements. Darker shades represent sand (low
clay content), and brighter shades represent silt (high clay
content). (c) True resistivity random field built by projecting
the “true” shaliness field using the petrophysical relationship
depicted in Figure 6a.

Figure 10. Upscaling small-scale block conductivities k l ,m,
l 5 1, z z z , nx; m 5 1, z z z , nz into survey scale block
conductivity kb.
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5.1. Indicator Likelihood Functions and Updating the
Lithology Images

Equation (15) requires to infer the likelihood function
L(r uI). To identify L , we use a “training set.” The idea is to
identify a portion of the survey area that will be drilled and
cored post survey to yield a set of collocated measurements (r ,
i). The dimension of the training set area should be deter-
mined such that the survey represents the entire range of
conditions expected over the entire surveyed area. The sam-
pled area needs to be ergodic in terms of bivariate (r , i)
statistics. That usually implies a dimension of several integral
scales vertically, along cored wells. Values of r measured close
to the wells can also be considered as located at the well itself.
An alternative that is not pursued here is to derive the likeli-
hood function analytically, on the basis of upscaling rules [i.e.,
Copty and Rubin, 1995; Rubin et al., 1992]. In the present
application the well-sampled area near well 1250 (right-hand
side of Figure 3) was set to be the training set, and the much
less sampled area near well 1205 (left-hand side of Figure 3)
was set as the “testing set.”

L(r uI) is determined for a given I 5 i and r 5 r0 by

Figure 11. Examples of the resistivity surveys obtained by
geometric averaging of the “true” resistivity field (Figure 9c)
over (a) three and (b) nine small-scale blocks in the horizontal
and vertical directions.

Figure 12. (a) Single realization of the lithology field ob-
tained by sequential indicator simulation of the lithology con-
ditional to borehole core data. Black and white represent sand
and silt, respectively. (b) Single realization of the shaliness field
obtained by sequential Gaussian simulation of the shaliness
conditional to borehole shaliness measurements. (c) Single
realization of the resistivity field built by projecting the shali-
ness random field (Figure 12b) using the petrophysical rela-
tionship (Figure 6a).
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scanning the set of collocated pairs (i , r0) and computing the
conditional probability Prob[r 5 r0uI 5 i]. Equation (15) is
then used to update the lithology image (Figure 12a) using
different resistivity survey resolutions. Images of the “testing
set” obtained on the basis of (15) for nx 3 nz 5 3 3 3, 6 3
6 and 9 3 9 resistivity surveys are practically of the same
quality as without updating and differ only by a fraction less
than 1% from the prior lithology (Figure 12a), even in case of
high-resolution resistivity survey (3 3 3), Figure 13. This
outcome is a manifestation of the effect of the homogeni-
zation, which obscures the resistivity-lithology relationship.
A large number of resistivity combinations can lead to the
same r and hence to nonunique relationship between r and
the lithology.

5.2. Resistivity Likelihood Functions and Updating the
Resistivity Images

L(r ur) of equation (13) is approximated here by L(r ur 2
dr # r , r 1 dr) with a relatively small dr , due to the data
scarcity. A couple of typical examples are shown in Figure 14.
It depicts likelihood functions for two ranges of resistivity,
[10.5, 11.5] V m and [17.25, 19.25] V m.

The effect of updating the resistivity based on surveys with
different resolutions is demonstrated in Figure 15. It shows the
prior and posterior resistivity pdf’s at arbitrary points within
the silt and sand lithologies for various resolutions of the re-
sistivity survey. The maximum beneficial effect is obtained, not
surprisingly, through the high-resolution survey, but the posi-
tive impact of conditioning R on r is discernible even at the
low-resolution surveys. The trend of reduction in impact with
poorer resolution is evident and is an outcome of the diffuse
and noninformative nature of the likelihood function as the
discrepancy between the survey scale and the desired resolu-
tion scale increases.

Note that conditioning R on r does not imply that the ran-
domly generated values will average exactly to yield r unless
special measures are taken. To honor precisely the surveyed
value r, a constraint on the generated value is introduced so
that the generated r values over any volume corresponding to

r will average exactly to yield r. The procedure is outlined in
Appendix B.

Figures 16a and 16b depict the updated resistivity fields for
nx 3 nz 5 3 3 3 and 9 3 9 resistivity survey. These figures
should be compared with the “true” image (Figure 9c, left
part), and with the image based on the prior pdf’s (Figure 11c).
It is quite obvious that the resistivity surveys have a significant
positive impact, particularly at the high resolution.

5.3. Effectiveness of the Bayesian Updating

To evaluate the effectiveness of the updating procedure, we
analyze the following statistic:

Figure 13. Posterior lithology image of the “testing set” (left-
hand side of Figure 12a, using (15)) and 3 3 3 resistivity survey
(Figure 11a).

Figure 14. Examples of the likelihood function L(r ur) in-
ferred from 3 3 3 resistivity survey following (13).

Figure 15. Effect of the resolution of the nx 3 nz resistivity
survey on the posterior pdf’s (prior pdf’s are also plotted). The
bias in the variance and the mean decrease with the increase of
the resolution of the resistivity survey (from 12 3 12, 9 3 9,
6 3 6, to 3 3 3). The black box denotes “true” resistivity
values. Prior and posterior pdf’s for shaliness between 0.1 and
0.2 in (left) silt (I 5 1), and (right) sand (I 5 0).
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5k 5
urk 2 m0 u
urk 2 m9 u H5k , 1 successful updating

5k 5 1 unsuccessful.
(17)

where k is a running index over all the points outside the wells,
r is the actual resistivity (Figure 9c), m0 is the mean of the
posterior pdf f 0R(x)(x), and m9 is the mean of the prior pdf
f9R(x)(x). The ratio 5 compares the performance of the poste-
rior and the prior pdfs. 5 , 1 indicates a successful updating
procedure. 5 5 1 is a diffuse likelihood and hence a nonin-
formative survey. Figure 17 depicts the variation of 5, as a
function of the resolution of the survey. For completeness,
statistics were also computed for resistivity surveys of 2 3 2
and 12 3 12 block resolution. We have found that 5 decreases
with decrease in resolution, in line with Figure 15.

6. Summary
In this study we surveyed some of the problems associated

with combining resistivity tomography and resistivity well log-

ging. The focus on resistivity rather than on hydrogeological
properties stems from the observation that properties such as
permeability and porosity can be derived from the resistivity
based on well-documented models or using empirical, site-
specific models. We chose to conduct our study by considering
conditions as realistic as possible for that purpose. We ana-
lyzed the data collected at the LLNL site and synthetically
surveyed a cross section that was constructed to mimic closely
the geology of the site.

Our approach for data assimilation is stochastic Bayesian.
We find the justification for it in the large spatial variability and
data scarcity. The Bayesian approach allows us to condition
estimates on what is clearly a set of complex and nonlinear
petrophysical models relating between different geological at-
tributes.

The approach we presented here comprises several steps,
each of which is intended to explore, model, and utilize the
aspects of the data which are needed for relating between the
tomographic data and the well logs. However, we stop short of
stating that the approach is universal in all its components. The
complexity of the geophysical surveying and interpretation
makes several aspects of it site-specific.

Our study employed several relationships between induction
resistivity, lithology, shaliness and tomographic resistivity.
These relationships reflect, to a large degree, properties that
are well understood and are quite general in terms of trends.
We suspect, though, that these relationships cannot be trans-
ported to other sites. In this sense our method does not replace
or alleviate the tedious task of data exploration. We found
helpful in guiding us at the data exploration stage the need to
identify “common-factors”: the attributes or parameters that
can be used for projecting areally the well log data on the one
hand, and at the same time act as surrogates for hydrogeologi-
cal and geophysical properties. At the LLNL site, that key
element is the shaliness, owing to its well-defined spatial struc-
ture and its sensitivity to resistivity. The idea then is to employ
this variable for projecting well data and generating a prior pdf
that is both relevant for the application and that can benefit
from the geophysical survey.

Our approach becomes systematic once the “common fac-
tors” are identified. At this stage the Bayesian approach be-
comes the key for data assimilation. Its robustness stems from
its ability to express vague relationship as probabilistic rules

Figure 16. Posterior resistivity images of the testing set (left
side of Figure 12c, using (13)) and the resistivity surveys: (a)
3 3 3 resistivity survey (Figure 11a) and the posterior lithology
(Figure 13), and (b) 9 3 9 resistivity survey (Figure 11c) and
the posterior lithology (Figure 13).

Figure 17. Percentage of number of successes (equation
(17)) of the Bayesian updating approach for different survey
resolutions and different errors in the surveys.
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and to bridge over scale disparity issues. This brings us to refer
to the approach presented here as a set of tools rather than as
a clear road map.

Moving now to the more technical aspects of the approach,
there are clearly elements that can be changed and/or im-
proved, and there a few issues we would like to mention here.
The pdf’s in our application all follow Gaussian models. One
can argue that pdf’s should be accurate reflections of data and
not models or conjectures. This issue is particularly significant
for the tails of the pdf’s. However, our modeling decision here
does not impinge on the fundamentals of the approach, which
by no means require Gaussian pdf’s. We would like to refer-
ence here the work of Woodbury and Ulrych [1993], who estab-
lished clear guidelines for choosing priors. These guidelines
can be incorporated into our work easily.

Another issue concerns the development of the petrophysi-
cal models. Our search leading to Figure 6a was based on
visual inspection. However, we can clearly see a need to im-
plement a more systematic approach, especially given that the
relationship can be more complex in terms of the number of
clusters and the number of the parameters involved.

We would like to bring forward the issue of probability
versus similarity. Let us consider Figure 6a. It is obvious that a
frequentist interpretation is appropriate over some regions of
the cross plot. However, we propose that Figure 6a is somehow
a reductionist view of the geology. In fact, the data used in the
cross plot do not follow precisely the “either sand or silt”
pattern. There are logs that have some similarity to both silt
and sand, and may belong to both groups if we allow some
flexibility in the degree of membership. That flexibility is not
currently a part or our approach: a probabilistic approach can
handle and/or situations but not similarity issues. We see a
promise in the theory of fuzzy sets [Bilal and Gupta, 1997].

Under the conditions explored here, we found that even in
the presence of realistic error levels in the geophysical surveys,
a significant reduction of the estimation error was observed.
We have found that the benefits in estimating high-resolution
subsurface resistivity given a low-resolution resistivity survey
are more significant than those gained in estimating lithology.
The LLNL data showed good correlation between resistivity
and lithology at the small scale, but at lower resolution the
correlations deteriorate. This observation is supported by the
fact that the resistivity surveys were noninformative for updat-
ing the lithology images. Resistivity-shaliness-lithology rela-
tions may show perfect correlation at a fine scale but can
appear to have large scatter when using a larger observation
scale.

Finally, a conceptual difficulty we encountered when pre-
senting this approach is the scale discrepancy between the
measured r and the simulated r . It is emphasized that the scale
of r is arbitrary and can be as small as the correlation between
r and r will support; r is simulated, not estimated.

Appendix A: Synthetic Electromagnetic Survey
The theoretical foundation of the EM survey is based on

Maxwell’s wave propagation equations. These latter couple the
electric field E to the magnetic field H as follows:

¹ 3 E~x , t! 5 2


t B~x , t! (A1)

¹ 3 H~x , t! 5


t D~x , t! 1 J~x , t! (A2)

¹ z B~x , t! 5 0 ¹ z D~x , t! 5 Q~x , t! (A3)

where D is the electric flux, B the magnetic flux, J is the current
density, and Q is the charge density [Chew, 1990]. For time
varying EM fields, equations (A3) can be derived from the first
two equations using the continuity equation given by

¹J 5 2
Q
t 5 2



t ~¹ z D! (A4)

In this static case, the electric field and the magnetic one are
decoupled, and the electric field equations can be solved inde-
pendently from the magnetic ones. This approximation should
be viewed as an approximation, applicable in cases where the
spatial variability of the conductivity is weak. This approxima-
tion has already been used in previous studies [e.g., Beard et al.,
1996].

In the case of the HSU2 at the LLNL, the mean of the
resistivity is 11 V m and 17 V m, in silt and sand, respectively.
The variance of the resistivity in silt and sand are 2 and 3.5
(V m)2. These statistics show that the contrasting of vari-
ability between and within each silt and sand bodies are
similar, and assumptions similar to those of Beard et al.
[1996] can be made.

Defining the current density J as [Telford et al., 1990]

J 5 R21E; E 5 2¹V (A5)

where V is the potential, it satisfies the continuity equation
(A4), which leads to

¹~k¹V! 5 0 (A6)

where k 5 1/R is the electric conductivity.
Equation (A6) describes the response of the domain at the

smallest scale over which k can be defined. In a geophysical
survey, the small-scale variability cannot be detected. Instead,
large parts of the domain are homogenized, and respond as a
homogeneous block. The geophysical survey defines the block
conductivity, kb 5 1/r, for which the continuity equation
becomes:

¹~kb¹Vb! 5 0 (A7)

where Vb describes the potential field in the homogenized
resistivity field, subject to the same boundary conditions as in
(A6).

Appendix B: Conditional Mean Sampling
For an arbitrary covariance matrix, generating random sam-

ples from a joint normal distribution with given values of some
linear combinations is not difficult, because all linear combi-
nations of jointly normal random variables are jointly normal,
which means that the conditional distributions are also jointly
normal. The procedure is to subtract the regression of the
various variables on the constraints; i.e., assuming the n ran-
dom variables r1, z z z , ri, z z z , rn are generated from different
Gaussian pdf f 01(r; m 01, s 01), z z z , f 0n(r; m 0n, s 0n), respec-
tively, all ri have to average to the resistivity survey r. For an
arithmetic average, the difference between r and the sampled
r# 5 ¥ l r l/n is then subtracted from each rl as follows:

r 0l 5 r l 2 ~r# 2 r! (B1)
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where r0 is the posterior resistivity. For a geometric mean the
procedure remains valid, but the resistivity should be replaced
by its logarithm: ln (r).

To take into account the variability for each pdf, one should
weight the corrected resistivity value with respect to their rel-
ative inertia, as follows:

r 0l 5 r l 2 ns l
2~r# 2 r!/O

m

sm
2 (B2)

Since corrections are deterministic, statistics of each distri-
bution remain the same.
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